tìm hệ số của số hạng chứa x 8
Tìm hệ số của số hạng chứa x8 x 8 trong khai triển nhị thức Newton của ( 1 x3 +√x5)n ( 1 x 3 + x 5) n, biết Cn+1 n+4 −Cn n+3 = 7(n+3) C n + 4 n + 1 − C n + 3 n = 7 ( n + 3) A. 495 B. 313 C. 1303 D. 13129 Đáp án đúng: A Tải trọn bộ tài liệu tự học tại đây Lời giải của Tự Học 365 Giải chi tiết: ĐK: n ≥0 n ≥ 0
15. Hình tượng của Ma Kết: trầm mặc, ít nói. 16. Ma Kết trong tình yêu: thực tế, không cầu xin. 17. Ma Kết với con cái: nghiêm túc và luôn bảo vệ. 18. Ma kết chỉ tấn công khi: tìm thấy đối tượng thích hợp. 19.
Công thức tìm giới hạn dãy số. Trong Toán học, khái niệm "giới hạn" được sử dụng để chỉ giá trị mà một hàm số hoặc một dãy số tiến gần đến khi biến số tương ứng tiến gần đến một giá trị nào đó. Trong một không gian đầy đủ, khái niệm giới hạn cho
Số hạng = Tổng số - Số hạng đã biết Vế trái là một biểu thức chứa ngoặc đơn, có 2 phép tính. Vế phải là tổng, hiệu, tích, thương của hai số. Bài tập ví dụ tìm x. Ví dụ 1: a) 1264 + X = 9825 X = 9825 - 1264. X = 8561. b) X + 3907 = 4015 X = 4015 - 3907. X = 108.
Hình ảnh Toyota Sequoia 2023 Toyota Sequoia 2023 chảy trong mình chất Offroad với các chi tiết cứng khỏe được tạo hình quanh xe Phía trước vẫn là cụm đèn chiếu sáng Full LED thông minh to khỏe, cùng mặt ca lăng cỡ lớn Hệ thống i-FORCE MAX không chỉ lớn về sức mạnh, vì hệ thống truyền động được thiết kế khéo léo
Einen Mann Nach Einem Treffen Fragen. Bài 3 Nhị thức Niu-tơn lý thuyết trắc nghiệm hỏi đáp bài tập sgk Câu hỏi Ly Po 28 tháng 10 2019 lúc 2041 Tìm số hạng chứa x8 trong khai triển Mx= 1+x31-x58 Trong khai triển x-a3 .x+b6, hệ số của x7 là -36 và không có số hạng chứa x8. Tìm a? Xem chi tiết 1. Tìm hệ số của số hạng x^4 trong khai triển leftx-3right^92. Tìm hệ số của số hạng chứa x^{12}y^{13} trong khai triển left2x+3yright^{25}3. Tìm hệ số của số hạng chứa x^4 trong khai triển leftdfrac{x}{3}-dfrac{3}{x}right^{12}4. Tìm hệ số của số hạng không chứa x trong khai triển leftx^2-dfrac{1}{x}right^65. Tìm hệ số của số hạng không chứa x trong khai triển leftx+dfrac{1}{x^4}right^{10}Đọc tiếp Xem chi tiết 8. Trong khai triển 8a^2 - 1/2b^6 hệ số của số hạng chứa a^ là? 9. Trong khai triển x + 8/x^2^9 số hạng ko chứa x là? A. 4308 B. 86016 C. 84 D. 43008 Xem chi tiết tìm số hạng chứa x^8 trong khai triển \\left1+x^2\left1-x\right\right^8\ tìm hệ số của số hạng chứa x^5 trong khai triển 1+x+x2+x310 tìm hệ số của x^3 trong kt x2-x+210 tìm hệ số của x^4 trong kt 1+x+3x210 Xem chi tiết Cho khai triển 2x-1^6.3x^2+1^5 . Tìm số hạng chứa x^4 trong khai triển . Xem chi tiết Bài 4 SGK trang 58 3 tháng 4 2017 lúc 2140 Tìm số hạng không chứa x trong khai triển của \\leftx^3+\dfrac{1}{x}\right^8\ ? Xem chi tiết hệ số của số hạng chứa \x^6\ trong khai triển \\left1+x^2\right^{12}\ hệ số của số hạng chứa \x^6\ trong khai triển \\left2x-1\right^{10}\HELP ME! Xem chi tiết Bài 1 hệ số của số hạng chứa \x^6\ trong khai triển \\left1+x^2\right^{12}\ hệ số của số hạng chứa \x^6\ trong khai triển \\left2x-1\right^{10}\Giúp mk vs ạ!!! Xem chi tiết Tìm số hạng không chứa x trong khai triển 2x3 + \\dfrac{1}{x^2}\10 Xem chi tiết
Imagens de câmeras de segurança mostram Bruno de Souza Rodrigues carregando cachorro da raça yorkshire e entrando em veículo branco em Campo Grande Bruno Rodrigues, preso pelos crimes de homicídio qualificado e ocultação de cadáver Reprodução Apontado como principal suspeito da morte do ator Jeff Machado, o produtor de TV Bruno de Souza Rodrigues é procurado da polícia desde o dia 2 de junho, quando foi decretada prisão temporária pelo homicídio e ocultação de cadáver do artista. Desde então, a Delegacia de Descobertas de Paradeiros DDPA está em busca do produtor. Bruno foi visto saindo de um apartamento na Estrada do Monteiro, em Campo Grande, no dia 27 de maio. Imagens de câmera de segurança mostram o produtor saindo da residência, usando camisa branca, boné, segurando uma bolsa com um cachorro da raça yorkshire e entrando em um carro branco. Suspeito de morte do ator Jeff Machado é flagrado saindo de uma casa na Zona Oeste Segundo as investigações, o apartamento seria de um amigo de Bruno, e há indícios de que ele esteve escondido no imóvel pelo menos até a véspera de o mandado de prisão ser expedido, na última quinta-feira. O cachorro carregado pelo suspeito, segundo a polícia, se chama Chanel e é sempre visto com o suspeito. Pedido de habeas corpus A defesa de Bruno Rodrigues pediu habeas corpus a favor dele na terça-feira, ao Tribunal de Justiça do Rio. Contra ele, há um mandado de prisão pela morte e ocultação do cadáver de Jeff Machado, assassinado em 23 de janeiro. Na última quinta-feira, a Justiça determinou a prisão temporária dos envolvidos no crime Jeander Vinícius, que foi preso na sexta, e Bruno, que segue foragido. Bruno Rodrigues, preso pelos crimes de homicídio qualificado e ocultação de cadáver — Foto Reprodução No pedido de habeas corpus, a defesa alega que Bruno não precisa estar preso para que a investigação tenha prosseguimento, principalmente porque, agora, testemunhas já ouvidas pela polícia vão prestar novos depoimentos. O documento também explica que Bruno indicou para a polícia o local do corpo, colaborando para a conclusão do inquérito. Veja fotos dos cachorros do ator Jeff Machado 1 de 8 Tim Maia, Nando Reis, Elis Regina, Cazuza, Vinícius de Moraes, Gilberto Gil, Rita Lee e Caetano Veloso — Foto Reprodução / Instagram 2 de 8 Jeff com os cães durante encontro de Setters no Rio, em 2021 — Foto Reprodução / Instagram 8 fotos 3 de 8 Cães ganharam nomes de artistas brasileiros Caetano Veloso, Rita Lee, Miúcha, Nando Reis, Gilberto Gil, Cazuza, Tim Maia, Nara Leão e Vinícius de Moraes — Foto Reprodução / Instagram 4 de 8 A dupla batizada de Gilberto Gil e Caetano Veloso — Foto Reprodução / Instagram 5 de 8 A chow-chow Nara Leão do ator Jeff Machado — Foto Reprodução / Instagram 6 de 8 Jeff também costumava postar fotos com os pets de amigos — Foto Reprodução / Instagram 7 de 8 O setter Vinícius de Moraes — Foto Reprodução / Instagram 8 de 8 Tim Maia — Foto Reprodução / Instagram Campo Grande Polícia Civil Rio de Janeiro RJ
Câu hỏi Tìm hệ số của số hạng chứa \x^8\ trong khai triển Nhị thức Niu tơn của \{\left {\frac{n}{{2x}} + \frac{x}{2}} \right^{2n}}\,\,\left {x \ne 0} \right\, biết số nguyên dương n thỏa mãn \C_n^3 + A_n^2 = 50.\ A. \\frac{{297}}{{512}}\ B. \\frac{{29}}{{51}}\ C. \\frac{{97}}{{12}}\ D. \\frac{{279}}{{215}}\ Lời giải tham khảo Đáp án đúng A Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Bài viết hướng dẫn phương pháp giải bài toán tìm hệ số hoặc số hạng chứa ${x^h}$ trong khai triển chứa điều kiện, đây là dạng toán thường gặp trong chương trình Đại số và Giải tích 11 Tổ hợp và xác PHƯƠNG PHÁP GIẢI TOÁN Các bài toán loại này thường chưa biết $n$ trong khai triển, do đó ta thực hiện các bước + Từ điều kiện bài toán tìm $n$ hoặc các ẩn liên quan. + Sau đó thực hiện tương tự bài toán tìm hệ số của số hạng chứa ${x^h}$ trong khai triển biết $n$ đã được đề cập trước đó trên BÀI TẬP ÁP DỤNG Bài 1 Cho $n$ là số nguyên dương thỏa mãn $5C_n^{n – 1} = C_n^3.$ Tìm số hạng chứa ${x^5}$ trong khai triển nhị thức Niu-tơn của ${\left {\frac{{n{x^2}}}{{14}} – \frac{1}{x}} \right^n}$ với $x \ne 0.$Lời giải Xét phương trình $5C_n^{n – 1} = C_n^3.$ Điều kiện $\left\{ {\begin{array}{*{20}{l}} {n \ge 3}\\ {n \in Z} \end{array}} \right..$ Phương trình $ \Leftrightarrow 5.\frac{{n!}}{{n – 1!}} = \frac{{n!}}{{3!n – 3!}}$ $ \Leftrightarrow 5n = \frac{{nn – 1n – 2}}{6}.$ $ \Leftrightarrow 30 = {n^2} – 3n + 2$ $ \Leftrightarrow {n^2} – 3n – 28 = 0$ $ \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {n = 7}\\ {n = – 4\,\,{\rm{loại}}} \end{array}} \right..$ Khi đó ${\left {\frac{{n{x^2}}}{{14}} – \frac{1}{x}} \right^n}$ $ = {\left {\frac{{{x^2}}}{2} – \frac{1}{x}} \right^7}$ $ = \sum\limits_{k = 0}^7 {C_7^k} {\left {\frac{{{x^2}}}{2}} \right^{7 – k}}.{\left { – \frac{1}{x}} \right^k}.$ Số hạng tổng quát trong khai triển là ${T_{k + 1}}$ $ = C_7^k{\left {\frac{{{x^2}}}{2}} \right^{7 – k}}.{\left { – \frac{1}{x}} \right^k}$ $ = C_7^k.\frac{{{x^{14 – 2k}}}}{{{2^{7 – k}}}}.\frac{{{{ – 1}^k}}}{{{x^k}}}$ $ = C_7^k.\frac{{{{ – 1}^k}}}{{{2^{7 – k}}}}.{x^{14 – 3k}}.$ Nếu hạng tử ${T_{k + 1}}$ chứa ${x^5}$ thì $14 – 3k = 5$ $ \Leftrightarrow k = 3.$ Vậy số hạng chứa ${x^5}$ là số hạng thứ $4$ trong khai triển là ${T_6} = C_7^3.\frac{{{{ – 1}^3}}}{{{2^4}}}.{x^5} = – \frac{{35}}{{16}}{x^5}.$Bài 2 Tìm hệ số của số hạng chứa ${x^{10}}$ trong khai triển nhị thức Niutơn của ${2 + x^n}$, biết ${3^n}C_n^0 – {3^{n – 1}}C_n^1$ $ + {3^{n – 2}}C_n^2 – {3^{n – 3}}C_n^3$ $ + … + { – 1^n}C_n^n = 2048.$Lời giải Ta có ${3 + x^n}$ $ = C_n^0{3^n} + C_n^1{3^{n – 1}}x$ $ + C_n^2{3^{n – 2}}{x^2} + \ldots + C_n^n{x^n}.$ Chọn $x = – 1$, ta được ${3^n}C_n^0 – {3^{n – 1}}C_n^1$ $ + {3^{n – 2}}C_n^2 – {3^{n – 3}}C_n^3$ $ + … + { – 1^n}C_n^n$ $ = {3 – 1^n} = {2^n}.$ Từ giả thiết suy ra ${2^n} = 2048 = {2^{11}}$ $ \Leftrightarrow n = 11.$ Suy ra ${2 + x^n}$ $ = {2 + x^{11}}$ $ = \sum\limits_{k = 0}^{11} {C_{11}^k} {2^{11 – k}}{x^k}.$ Số hạng tổng quát trong khai triển là $C_{11}^k{2^{11 – k}}{x^k}.$ Cho $k =10$, ta được hệ số của ${x^{10}}$ trong khai triển là $C_{11}^{10}.2 = 22.$Bài 3 Trong khai triển nhị thức ${\left {x + \frac{1}{x}} \right^n}$, hệ số của số hạng thứ ba lớn hơn hệ số của số hạng thứ hai là $35.$ Tìm số hạng không chứa $x$ trong khai triển nói trên với $n \in {N^*}$.Lời giải Ta có ${\left {x + \frac{1}{x}} \right^n}$ $ = \sum\limits_{k = 0}^n {C_n^k} {x^{n – k}}{\left {\frac{1}{x}} \right^k}$ $ = \sum\limits_{k = 0}^n {C_n^k} {x^{n – 2k}}.$ Hệ số của số hạng thứ $k + 1$ trong khai triển là ${T_{k + 1}} = C_n^k.$ Theo giả thiết ta có $C_n^2 – C_n^1 = 35$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {n \ge 2,n \in N}\\ {\frac{{n!}}{{2!n – 2!}} – n = 35} \end{array}} \right..$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {n \ge 2,n \in N}\\ {\frac{{nn – 1}}{2} – n = 35} \end{array}} \right.$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {n \ge 2,n \in N}\\ {{n^2} – 3n – 70 = 0} \end{array}} \right.$ $ \Leftrightarrow n = 10.$ Do đó ${\left {x + \frac{1}{x}} \right^{10}}$ $ = \sum\limits_{k = 0}^{10} {C_{10}^k} {x^{10 – 2k}}.$ Số hạng không chứa $x$ trong khai triển là $C_{10}^k$ với $10 – 2k = 0$ $ \Leftrightarrow k = 5.$ Vậy số hạng không chứa $x$ trong khai triển là $C_{10}^5 = 252.$Bài 4 Tìm số hạng không chứa $x$ trong khai triển nhị thức ${\left {{x^2} + \frac{1}{{{x^3}}}} \right^n}$, biết rằng $C_n^1 + C_n^3 = 13n$ $n$ là số tự nhiên lớn hơn $2$ và $x$ là số thực khác $0$.Lời giải Ta có $C_n^1 + C_n^3 = 13n$ $ \Leftrightarrow \frac{{n!}}{{n – 1!}} + \frac{{n!}}{{3!n – 3!}} = 13n$ $ \Leftrightarrow n + \frac{{nn – 1n – 2}}{6} = 13n.$ $ \Leftrightarrow 1 + \frac{{n – 1n – 2}}{6} = 13$ $ \Leftrightarrow {n^2} – 3n – 70 = 0$ $ \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {n = 10}\\ {n = – 7\,\,{\rm{loại}}} \end{array}} \right..$ Do đó ${\left {{x^2} + \frac{1}{{{x^3}}}} \right^n}$ $ = {\left {{x^2} + \frac{1}{{{x^3}}}} \right^{10}}$ $ = \sum\limits_{k = 0}^{10} {C_{10}^k} {\left {{x^2}} \right^{10 – k}}{\left {{x^{ – 3}}} \right^k}$ $ = \sum\limits_{k = 0}^{10} {C_{10}^k} {x^{20 – 5k}}.$ Số hạng tổng quát trong khai triển $C_{10}^k{x^{20 – 5k}}.$ Hệ số không chứa $x$ trong khai triển là $C_{10}^k$ với $k$ thỏa mãn $20 – 5k = 0$ $ \Leftrightarrow k = 4.$ Vậy số hạng không chứa $x$ trong khai triển là $C_{10}^4 = 210.$Bài 5 Khai triển biểu thức ${1 – 2x^n}$ ta được đa thức có dạng ${a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_n}{x^n}.$ Tìm hệ số của ${x^5}$ biết rằng ${a_0} + {a_1} + {a_2} = 71.$Lời giải Ta có ${1 – 2x^n}$ $ = \sum\limits_{k = 0}^n {C_n^k} .{ – 2x^k}$ $ = \sum\limits_{k = 0}^n {C_n^k} .{ – 2^k}{x^k}.$ Do đó ${a_k} = C_n^k.{ – 2^k}$, $\forall k = \overline {0..n} .$ Khi đó ${a_0} + {a_1} + {a_2} = 71$ $ \Leftrightarrow C_n^0 – 2C_n^1 + 4C_n^2 = 71.$ $ \Leftrightarrow 1 – 2n + 4\frac{{nn – 1}}{2} = 71$ $ \Leftrightarrow {n^2} + 2n – 35 = 0$ $ \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {n = 5}\\ {n = – 7\,\,{\rm{loại}}} \end{array}} \right..$ Suy ra ${1 – 2x^7}$ $ = \sum\limits_{k = 0}^7 {C_7^k.} { – 2^k}.{x^k}.$ Vậy hệ số của ${x^5}$ trong khai triển là $C_7^5{ – 2^5} = – 672.$Bài 6 Tìm hệ số của ${x^{26}}$ trong khai triển nhị thức Newton của ${\left {\frac{1}{{{x^4}}} + {x^7}} \right^n}$, biết rằng $C_{2n + 1}^1 + C_{2n + 1}^2 + \ldots + C_{2n + 1}^n$ $ = {2^{20}} – 1.$Lời giải Xét khai triển ${1 + x^{2n + 1}}$ $ = C_{2n + 1}^0 + C_{2n + 1}^1x$ $ + C_{2n + 1}^2{x^2} + C_{2n + 1}^3{x^3}$ $ + \ldots + C_{2n + 1}^{2n + 1}{x^{2n + 1}}.$ Chọn $x = 1$, ta được $C_{2n + 1}^0 + C_{2n + 1}^1$ $ + C_{2n + 1}^2 + C_{2n + 1}^3$ $ + \ldots + C_{2n + 1}^{2n + 1} = {2^{2n + 1}}$ $*.$ Áp dụng công thức $C_{2n + 1}^k = C_{2n + 1}^{2n + 1 – k}$, ta có $* \Leftrightarrow C_{2n + 1}^0 + C_{2n + 1}^1$ $ + C_{2n + 1}^2 + \ldots + C_{2n + 1}^n$ $ + C_{2n + 1}^n + C_{2n + 1}^{n – 1}$ $ + \ldots + C_{2n + 1}^0 = {2^{2n + 1}}.$ $ \Leftrightarrow 2\left {C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + \ldots + C_{2n + 1}^n} \right = {2^{2n + 1}}.$ $ \Leftrightarrow C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + \ldots + C_{2n + 1}^n = {2^{2n}}.$ $ \Leftrightarrow C_{2n + 1}^1 + C_{2n + 1}^2 + \ldots + C_{2n + 1}^n$ $ = {2^{2n}} – 1.$ Từ giả thiết ta có ${2^{2n}} – 1 = {2^{20}} – 1$ $ \Leftrightarrow n = 10.$ Khi đó ${\left {\frac{1}{{{x^4}}} + {x^7}} \right^n}$ $ = {\left {\frac{1}{{{x^4}}} + {x^7}} \right^{10}}$ $ = \sum\limits_{k = 0}^{10} {C_{10}^k} {\left {{x^{ – 4}}} \right^{10 – k}}{\left {{x^7}} \right^k}$ $ = \sum\limits_{k = 0}^{10} {C_{10}^k} {x^{11k – 40}}.$ Số hạng tổng quát trong khai triển là $C_{10}^k{x^{11k – 40}}.$ Hệ số của ${x^{26}}$ trong khai triển là $C_{10}^k$ với $k$ thỏa mãn $11k – 40 = 26$ $ \Leftrightarrow k = 6.$ Vậy hệ số của ${x^{26}}$ trong khai triển là $C_{10}^6 = 210.$Bài 7 Tìm hệ số chứa ${x^7}$ trong khai triển thành đa thức của ${2 – 3x^{2n}}$, trong đó $n$ là số nguyên dương thỏa mãn $C_{2n + 1}^1 + C_{2n + 1}^3$ $ + C_{2n + 1}^5 + \ldots + C_{2n + 1}^{2n + 1} = 1024.$Lời giải Ta có ${1 + x^{2n + 1}}$ $ = C_{2n + 1}^0 + C_{2n + 1}^1x$ $ + C_{2n + 1}^2{x^2} + C_{2n + 1}^3{x^3}$ $ + \ldots + C_{2n + 1}^{2n + 1}{x^{2n + 1}}.$ Chọn $x = 1$, ta được $C_{2n + 1}^0 + C_{2n + 1}^1$ $ + C_{2n + 1}^2 + C_{2n + 1}^3$ $ + \ldots + C_{2n + 1}^{2n + 1} = {2^{2n + 1}}$ $*.$ Chọn $x = -1$, ta được $C_{2n + 1}^0 – C_{2n + 1}^1$ $ + C_{2n + 1}^2 – C_{2n + 1}^3$ $ + \ldots – C_{2n + 1}^{2n + 1} = 0.$ $ \Leftrightarrow C_{2n + 1}^0 + C_{2n + 1}^2$ $ + C_{2n + 1}^4 + \ldots + C_{2n + 1}^{2n}$ $ = C_{2n + 1}^1 + C_{2n + 1}^3$ $ + C_{2n + 1}^5 + \ldots + C_{2n + 1}^{2n + 1}.$ Từ $*$ suy ra $2\left {C_{2n + 1}^1 + C_{2n + 1}^3 + C_{2n + 1}^5 + \ldots + C_{2n + 1}^{2n + 1}} \right$ $ = {2^{2n + 1}}.$ $ \Leftrightarrow C_{2n + 1}^1 + C_{2n + 1}^3$ $ + C_{2n + 1}^5 + \ldots + C_{2n + 1}^{2n + 1} = {2^{2n}}.$ Theo giả thiết ta có ${2^{2n}} = 1024 = {2^{10}}$ $ \Leftrightarrow n = 5.$ Từ đó suy ra ${2 – 3x^{2n}}$ $ = {2 – 3x^{10}}$ $ = \sum\limits_{k = 0}^{10} {{{ – 1}^k}} C_{10}^k{2^{10 – k}}{3x^k}$ $ = \sum\limits_{k = 0}^{10} {{{ – 1}^k}} {.3^k}.C_{10}^k{2^{10 – k}}{x^k}.$ Số hạng tổng quát trong khai triển là ${ – 1^k}{.3^k}.C_{10}^k{2^{10 – k}}.{x^k}.$ Để có hệ số chứa ${x^7}$ tương ứng với giá trị của $k$ thỏa mãn $k =7.$ Vậy hệ số chứa ${x^7}$ trong khai triển là ${ – 1^7}{.3^7}.C_{10}^7{.2^3}$ $ = – C_{10}^7{3^7}{2^3} = 2099520.$Bài 8 Tìm hệ số chứa ${x^8}$ trong khai triển nhị thức Newton ${\left {\frac{1}{{{x^3}}} + \sqrt {{x^5}} } \right^n}$, biết rằng $C_{n + 4}^{n + 1} – C_{n + 3}^n$ $ = 7n + 3$ $n$ nguyên dương, $x>0$.Lời giải Ta có $C_{n + 4}^{n + 1} – C_{n + 3}^n$ $ = 7n + 3$ $ \Leftrightarrow \frac{{n + 4!}}{{3!n + 1!}} + \frac{{n + 3!}}{{3!n!}}$ $ = 7n + 3.$ $ \Leftrightarrow \frac{{n + 4n + 3n + 2}}{6}$ $ – \frac{{n + 3n + 2n + 1}}{6}$ $ = 7n + 3.$ $ \Leftrightarrow \frac{{n + 4n + 2}}{6}$ $ – \frac{{n + 2n + 1}}{6} = 7$ $ \Leftrightarrow n + 4n + 2 – n + 2n + 1 = 42.$ $ \Leftrightarrow 3n + 6 = 42$ $ \Leftrightarrow n = 12.$ Khi đó ${\left {\frac{1}{{{x^3}}} + \sqrt {{x^5}} } \right^n}$ $ = {\left {{x^{ – 3}} + {x^{\frac{5}{2}}}} \right^{12}}$ $ = \sum\limits_{k = 0}^{12} {C_{12}^k} {\left {{x^{ – 3}}} \right^k}{\left {{x^{\frac{5}{2}}}} \right^{12 – k}}.$ Số hạng tổng quát trong khai triển là $C_{12}^k{\left {{x^{ – 3}}} \right^k}{\left {{x^{\frac{5}{2}}}} \right^{12 – k}}$ $ = C_{12}^k{x^{\frac{{60 – 11k}}{2}}}.$ Để có hệ số chứa ${x^8}$ thì $\frac{{60 – 11k}}{2} = 8$ $ \Leftrightarrow 60 – 11k = 16$ $ \Leftrightarrow k = 4.$ Vậy hệ số chứa ${x^8}$ trong khai triển là $C_{12}^4 = \frac{{12!}}{{4!12 – 4!}} = 495.$Bài 9 Cho khai triển ${\left {{2^{\frac{{x – 1}}{2}}} + {2^{\frac{{ – x}}{3}}}} \right^n}$ $ = C_n^0{\left {{2^{\frac{{x – 1}}{2}}}} \right^n}$ $ + C_n^1{\left {{2^{\frac{{x – 1}}{2}}}} \right^{n – 1}}\left {{2^{\frac{{ – x}}{3}}}} \right$ $ + \ldots + C_n^{n – 1}\left {{2^{\frac{{x – 1}}{2}}}} \right{\left {{2^{\frac{{ – x}}{3}}}} \right^{n – 1}}$ $ + C_n^n{\left {{2^{\frac{{ – x}}{3}}}} \right^n}$ $n$ là số nguyên dương. Biết rằng trong khai triển đó có $C_n^3 = 5C_n^1$ và số hạng thứ tư bằng $140.$ Tìm $n$ và $x.$ Lời giải Xét phương trình ${C_n^3 = 5C_n^1}$ điều kiện ${n \ge 3}$. Ta có $C_n^3 = 5C_n^1$ $ \Leftrightarrow \frac{{n!}}{{3!n – 3!}} = 5\frac{{n!}}{{n – 1!}}$ $ \Leftrightarrow \frac{{nn – 1n – 2}}{6} = 5n.$ $ \Leftrightarrow \frac{{n – 1n – 2}}{6} = 5$ $ \Leftrightarrow {n^2} – 3n – 28 = 0$ $ \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {n = 7}\\ {n = – 4\,\,{\rm{loại}}} \end{array}} \right..$ Số hạng thứ tư trong khai triển là $C_n^3{\left {{2^{\frac{{x – 1}}{2}}}} \right^{n – 3}}{\left {{2^{\frac{{ – x}}{3}}}} \right^3}$ $ = C_7^3{\left {{2^{\frac{{x – 1}}{2}}}} \right^4}{\left {{2^{\frac{{ – x}}{3}}}} \right^3}.$ Theo đề bài ta có $C_7^3{\left {{2^{\frac{{x – 1}}{2}}}} \right^4}{\left {{2^{\frac{{ – x}}{3}}}} \right^3} = 140$ $ \Leftrightarrow { – 2}}{.2^{ – x}} = 140$ $ \Leftrightarrow {2^{x – 2}} = 4$ $ \Leftrightarrow x – 2 = 2$ $ \Leftrightarrow x = 4.$ Vậy $n = 7$ và $x = 4.$Bài 10 Với $n$ là số nguyên dương, gọi ${a_{3n – 3}}$ là hệ số của ${x^{3n – 3}}$ trong khai triển thành đa thức của ${\left {{x^2} + 1} \right^n}{x + 2^n}.$ Tìm $n$ để ${a_{3n – 3}} = 26n.$Lời giải Ta có ${\left {{x^2} + 1} \right^n}$ $ = C_n^0{x^{2n}} + C_n^1{x^{2n – 2}}$ $ + C_n^2{x^{2n – 4}} + \ldots + C_n^n$ $1.$ Và ${x + 2^n}$ $ = C_n^0{x^n} + 2C_n^1{x^{n – 1}}$ $ + {2^2}C_n^2{x^{n – 2}} + {2^3}C_n^3{x^{n – 3}}$ $ + \ldots + {2^n}C_n^n$ $2.$ Với $n = 1$, ta có ${\left {{x^2} + 1} \right^n}{x + 2^n}$ $ = \left {{x^2} + 1} \rightx + 2$ $ = {x^3} + 2{x^2} + x + 2$ không thỏa mãn hệ thức ${a_{3n – 3}} = 26n.$ Tương tự với $n = 2$, cũng không thỏa mãn. Với $n \ge 3$, ta có ${x^{3n – 3}} = {x^{2n}}.{x^{n – 3}}$ $ = {x^{2n – 2}}.{x^{n – 1}}.$ Suy ra hệ số chứa ${x^{3n – 3}}$ bằng tổng của tích hệ số chứa ${x^{2n}}$ trong $1$ với hệ số chứa ${x^{n – 3}}$ trong $2$ và tích hệ số chứa ${x^{2n – 2}}$ trong $1$ với hệ số chứa ${x^{n – 1}}$ trong $2.$ Hay ta có ${a_{3n – 3}} = {2^3}.C_n^ + $ \Leftrightarrow {2^3}.1.\frac{{n!}}{{3!n – 3!}} + 2{n^2} = 26n.$ $ \Leftrightarrow \frac{{4nn – 1n – 2}}{3} + 2{n^2} = 26n$ $ \Leftrightarrow \frac{{2n – 1n – 2}}{3} + n = 13.$ $ \Leftrightarrow 2{n^2} – 3n – 35 = 0$ $ \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {n = 5}\\ {n = – \frac{7}{2}\,\,{\rm{loại}}} \end{array}} \right..$ Vậy $n = 5.$
tìm hệ số của số hạng chứa x 8